Quantum E(2) group and its Pontryagin dual

نویسنده

  • S. L. Woronowicz
چکیده

The quantum deformation of the group of motions of the plane and its Pontryagin dual are described in details. It is shown that the Pontryagin dual is a quantum deformation of the group of transformations of the plane generated by translations and dilations. An explicite expression for the unitary bicharacter describing the Pontryagin duality is found. The Heisenberg commutation relations are written down.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Lorentz group having Gauss decomposition property

A new deformation of SL(2,C) (considered as a real Lie group) is constructed and shown to have a Gauss type decomposition. The groups entering this decomposition are identified as Eμ(2) and its Pontryagin dual Êμ(2). The whole group is the double group built over Eμ(2).

متن کامل

The Pontryagin duals of Q/Z and Q

Write S = {z ∈ C : |z| = 1}. A character of a locally compact abelian group G is a continuous group homomorphism G → S. We denote by Ĝ the set of characters of G, where for φ1, φ2 ∈ Ĝ and x ∈ G, we define (φ1φ2)(x) = φ1(x)φ2(x). We assign Ĝ the final topology for the family of functions {φ 7→ φ(x) : x ∈ G}, i.e., the coarsest topology on Ĝ so that for each x ∈ G, the function φ 7→ φ(x) is conti...

متن کامل

Arcs in the Pontryagin dual of a topological abelian group

In this article we study the arcwise connected component in the Pontryagin dual of an abelian topological group. It is clear that the set of continuous characters that can be lifted over the reals is contained in the arcwise connected component of the dual group. We show that the converse is true if all arcs in the character group are equicontinuous sets. This property is present in Pontryagin ...

متن کامل

Topology Proceedings 37 (2011) pp. 315-330: Continuous and Pontryagin duality of topological groups

For Pontryagin’s group duality in the setting of locally compact topological Abelian groups, the topology on the character group is the compact open topology. There exist at present two extensions of this theory to topological groups which are not necessarily locally compact. The first, called the Pontryagin dual, retains the compact-open topology. The second, the continuous dual, uses the cont...

متن کامل

Decomposition of Phase Space and Classification of Heisenberg Groups

Is every locally compact abelian group which admits a Heisenberg central extension isomorphic to the product of a locally compact abelian group and its Pontryagin dual? An affirmative answer is obtained for all the commonly occurring types of abelian groups having Heisenberg central extensions, including Lie groups and certain finite Cartesian products of local fields and adèles. Furthermore, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000